Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

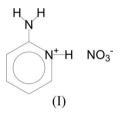
Melanie Rademeyer

School Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scotsville 3209, South Africa

Correspondence e-mail: rademeyerm@ukzn.ac.za

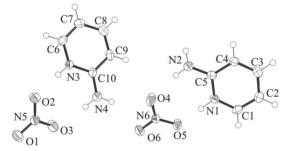
Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.040 wR factor = 0.122 Data-to-parameter ratio = 23.9


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

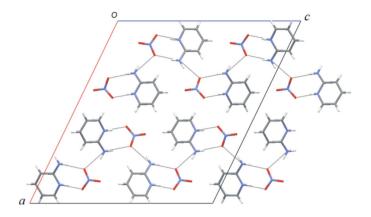
2-Aminopyridinium nitrate

Strong N-H···O interactions are present in the crystal structure of the title organic-inorganic hybrid material, $C_5H_7N_2^+$ ·NO₃⁻. Organic 2-aminopyridinium cations and discrete nitrate anions interact to form hydrogen-bonded ribbons. There are two cations and two anions in the asymmetric unit.


Comment

The structure of 2-aminopyridinium nitrate, (I), was determined as part of an ongoing study of the structural characteristics of organic-inorganic hybrid materials. The crystal structure of the sulfate salt of 2-aminopyridinium has been reported previously (Jebas *et al.*, 2006), and appears to be the only report in the literature of a structure consisting of 2aminopyridinium cations and non-metallic inorganic anions.

The molecular structure of (I) and the atomic labelling scheme employed are illustrated in Fig. 1. The asymmetric unit contains two crystallographically independent 2-aminopyridinium cations and two crystallographically independent isolated nitrate anions. Only the pyridinium N atoms of the cations are protonated, while the amine groups remain unprotonated, resulting in a charge of +1 for each cation.


Fig. 2 illustrates the layered molecular packing in the structure. The inorganic layer contains the discrete nitrate anions, and alternates with the organic layer which consists of the 2-aminopyridinium cations. Neighbouring cations in the

The asymmetric unit of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 1

© 2007 International Union of Crystallography All rights reserved Received 27 July 2006 Accepted 21 December 2006

Figure 2

Molecular packing and hydrogen-bonding interactions (dashed lines), viewed down the b axis.

organic layer differ in the orientation of the amino groups, as illustrated in Fig. 2. In the inorganic layer, N-O bond lengths range from 1.234 (1) to 1.260 (1) Å, and O-N-O bond angles fall between 118.8 (1) and 121.3 (1)°.

2-Aminopyridinium cations and nitrate anions interact *via* strong charge-assisted $N-H\cdots O$ hydrogen bonds, which are listed in Table 1. One-dimensional corrugated hydrogen-bonded ribbons are formed. Neighbouring hydrogen-bonded ribbons form sheets, and stacking of the sheets results in the three-dimensional structure. However, the ribbons or sheets do not interact *via* non-covalent interactions.

Experimental

2-Aminopyridinium nitrate was prepared by the dropwise addition of HNO_3 (0.64 ml, 70%, Aldrich) to a solution of 2-aminopyridine (0.506 g, 98%, Aldrich) in 20 ml chloroform The salt was re-crystallized from distilled water, and colourless crystals formed on evaporation at room temperature.

Z = 8

Crystal data

 $\begin{array}{l} C_{5}H_{7}N_{2}^{+}\cdot NO_{3}^{-} \\ M_{r} = 157.14 \\ \text{Monoclinic, } P2/c \\ a = 21.5559 (11) \text{ Å} \\ b = 3.6473 (1) \text{ Å} \\ c = 19.4851 (8) \text{ Å} \\ \beta = 115.752 (4)^{\circ} \\ V = 1379.79 (10) \text{ Å}^{3} \end{array}$

Data collection

Oxford Diffraction Excalibur2 diffractometer ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.949, T_{\max} = 0.983$ $D_x = 1.513 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 120 (2) K Needle, colourless 0.40 \times 0.20 \times 0.15 mm

20896 measured reflections 4939 independent reflections 3460 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.017$ $\theta_{\text{max}} = 34.2^{\circ}$ Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.040$
$wR(F^2) = 0.122$
S = 1.05
4939 reflections
207 parameters
H atoms treated by a mixture of
independent and constrained
refinement

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0641P)^2 \\ &+ 0.2988P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &< 0.001 \\ \Delta\rho_{\text{max}} &= 0.41 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.30 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3A···O2	0.866 (16)	1.956 (16)	2.7983 (13)	164 (2)
$N4 - H4B \cdot \cdot \cdot O4$	0.86	2.18	2.9564 (14)	150
$N4-H4A\cdots O3$	0.86	2.06	2.8959 (13)	164
$N1-H1A\cdots O5$	0.920 (16)	1.878 (16)	2.7790 (13)	166 (2)
$N2-H2A\cdots O4$	0.86	2.04	2.8915 (14)	170
$N2 - H2B \cdot \cdot \cdot O3^{i}$	0.86	2.10	2.8856 (13)	152
$N4 - H4B \cdots O6$	0.86	2.45	3.2450 (14)	154

Symmetry code: (i) $x, -y + 1, z + \frac{1}{2}$.

The pyridinium H atoms (H1A and H3A) were located in a Fourier map and their positions refined. This resulted in the best placement of these atoms in the hydrogen-bonding network. All other H atoms were placed in calculated positions, with aromatic C-H distances of 0.93 Å and amine N-H distances of 0.86 Å, and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}$ of the parent atom.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON* (Spek, 2003) and *WinGX* (Farrugia, 1999).

The author acknowledges funding received for this work from the University of KwaZulu-Natal Research Office, and from the National Research Foundation (GUN: 2054350).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jebas, S. R., Balasubramanian, T., Peschar, R. & Fraanje, J. (2006). *Acta Cryst.* E62, 02606–02607.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.